February 28, 2025

New Publication from CeMOS: Exploring the Aβ Plaque Microenvironment in Alzheimer’s Disease Model Mice by Multimodal Lipid-Protein-Histology Imaging on a Benchtop Mass Spectrometer

New Publication from CeMOS: Exploring the Aβ Plaque Microenvironment in Alzheimer’s Disease Model Mice by Multimodal Lipid-Protein-Histology Imaging on a Benchtop Mass Spectrometer

Müller, E.; Enzlein, T.; Niemeyer, D.; von Ammon, L.; Stumpo, K.; Biber, K.; Klein, C.; Hopf, C. Exploring the Aβ Plaque Microenvironment in Alzheimer’s Disease Model Mice by Multimodal Lipid-Protein-Histology Imaging on a Benchtop Mass Spectrometer. Pharmaceuticals 202518, 252. https://doi.org/10.3390/ph18020252

Abstract

Amyloid-β (Aβ) plaque deposits in the brain are a hallmark of Alzheimer’s disease (AD) neuropathology. Plaques consist of complex mixtures of peptides like Aβ1–42 and characteristic lipids such as gangliosides, and they are targeted by reactive microglia and astrocytes. Background: In pharmaceutical research and development, it is a formidable challenge to contextualize the different biomolecular classes and cell types of the Aβ plaque microenvironment in a coherent experimental workflow on a single tissue section and on a benchtop imaging reader. Methods: Here, we developed a workflow that combines lipid MALDI mass spectrometry imaging using a vacuum-stable matrix with histopathology stains and with the MALDI HiPLEX immunohistochemistry of plaques and multiple protein markers on a benchtop imaging mass spectrometer. The three data layers consisting of lipids, protein markers, and histology could be co-registered and evaluated together. Results: Multimodal data analysis suggested the extensive co-localization of Aβ plaques with the peptide precursor protein, with a defined subset of lipids and with reactive glia cells on a single brain section in APPPS1 mice. Plaque-associated lipids like ganglioside GM2 and phosphatidylinositol PI38:4 isoforms were readily identified using the tandem MS capabilities of the mass spectrometer. Conclusions: Altogether, our data suggests that complex pathology involving multiple lipids, proteins and cell types can be interrogated by this spatial multiomics workflow on a user-friendly benchtop mass spectrometer.

Our latest News

discover more
New approach for T-cell immunotherapy against malignant brain tumors

New approach for T-cell immunotherapy against malignant brain tumors

Researchers at the German Cancer Research Center (DKFZ) and the University Medical Center Mannheim (UMM) have developed a promising cellular immunotherapy for the treatment of glioblastomas: They equipped T cells with a receptor that recognizes a protein of the brain tumors that is responsible for the dangerous stem cell properties. The therapeutic T cells directed […]

RNA Origami: Artificial Cytoskeletons to Build Synthetic Cells

RNA Origami: Artificial Cytoskeletons to Build Synthetic Cells

Synthetic biologists from Heidelberg University create nanotubes folded from the natural RNA biomolecule With the long-term goal of creating living cells from non-living components, scientists in the field of synthetic biology work with RNA origami. This tool uses the multifunctionality of the natural RNA biomolecule to fold new building blocks, making protein synthesis superfluous. In […]

Hummingbird Diagnostics Announces Publication Evaluating miR-Blood’s Small RNA Expression Dataset Capabilities in Nature’s Scientific Data

Hummingbird Diagnostics Announces Publication Evaluating miR-Blood’s Small RNA Expression Dataset Capabilities in Nature’s Scientific Data

miR-Blood is capable of revealing highly cell-type specific patterns of small RNA expression HEIDELBERG, Germany, March 06, 2024 – Hummingbird Diagnostics GmbH, a leader in using blood-based small RNAs for early disease detection and characterization, today announced a publication in Scientific Data, a peer-reviewed, open-access journal launched by Nature. The study evaluated miR-Blood, Hummingbird Diagnostics’ […]

GET IN TOUCH

Stay Updated with bioRN’s Newsletter

Sign up for our newsletter to discover more!
* required

BioRN (BioRN Network e.V. and BioRN Cluster Management GmbH) will use the information you provide on this form to be in touch with you and to provide updates and marketing. Please let us know all the ways you would like to hear from us:

You can update your subscription preferences or unsubscribe at any time. Just follow the unsubscribe or update link in the footer of automated emails you receive from us, or by contacting us at info@biorn.org. We will treat your information with respect. For more information about our privacy practices please visit our website: www.biorn.org. By clicking below, you agree that we may process your information in accordance with these terms.

We use Mailchimp as our marketing platform. By clicking below to subscribe, you acknowledge that your information will be transferred to Mailchimp for processing. Learn more about Mailchimp's privacy practices.

Intuit Mailchimp