December 13, 2024

Brain tumour cells rapidly integrate into brain-wide neuronal circuits

Brain tumour cells rapidly integrate into brain-wide neuronal circuits

Researchers at the Medical Faculty of Heidelberg University and the Heidelberg University Hospital have used modified rabies viruses to label glioblastoma tumour cells and their direct cell contacts in the mouse brain. The new method showed that the tumour cells are connected to different types of nerve cells throughout the entire brain at a very early stage of the disease. This means that they form a network of connections with brain cells much earlier than previously assumed. It is this network that makes these tumours so difficult to treat. The results have been published in the latest edition of the scientific journal ‘Cell’.

Stylized illustration of rabies virus-infected tumor cells (in magenta and green) and the nerve cells directly connected to them (green).

The tumour cells of highly aggressive glioblastomas grow into the brain like a mycelium. This invasion is promoted by the nerve cells of the brain itself as they form cell-cell contacts with the tumour cells and pass on excitatory signals to them. Using a new method, researchers from Heidelberg University, the University Hospital (UKHD) and the German Cancer Research Center (DKFZ) have now shown that this contact occurs much earlier and also involves more types of nerve cells than previously assumed. The team, led by Dr. Dr. Varun Venkataramani, a neurologist and research group leader at the UKHD, infected and labelled human glioblastoma cells with modified rabies viruses and tracked how contact-seeking nerve cells became infected in human tissue models and in the mouse brain. The researchers hope to use their new findings for future therapies for glioblastomas, which are currently incurable.

‘The tumour network makes glioblastomas so difficult to fight: they cannot be completely removed and their interconnection makes them almost insensitive to radiation and chemotherapy,’ says Professor Dr. Wolfgang Wick, Medical Director of the UKHD’s Department of Neurology, Head of the European Centre for Neuro-Oncology at the Medical Faculty of Heidelberg University and Head of the ‘Neuro-Oncology’ Clinical Cooperation Unit of the UKHD and DKFZ. He is the spokesperson for the UNITE GLIOBLASTOMA Collaborative Research Centre, which is coordinated from Heidelberg and in which the recently published work was carried out. ‘Every new insight into how these tumours “tick” and where their weak points might be is a valuable step in the development of future therapies.’ Despite modern therapeutic strategies, patients diagnosed with glioblastoma have a less than two-year average survival rate. 

Rabies virus spreads from infected tumour cells to contact-seeking nerve cells 

Dr. Dr. Venkataramani’s idea was to use a virus that specialises in infecting the nervous system to combat the tumour cells: rabies viruses are usually transmitted via the bite of an infected animal and attack nerve cells. From the bite wound, they migrate along the neural connections into the brain, where they cause life-threatening inflammation. ‘We have exploited the ability of rabies viruses to pass from one nerve cell to the next via their contact points,’ says the neurologist.

Changes to the virus genome ensure that the viruses only pass from the tumour cell to directly connected nerve cells. Transmission from these to other nerve cells is not possible. In addition, the modified virus transfers the genetic blueprint for proteins that are fluorescent, thus making both tumour cells and their direct contact partners visible. ‘With previous techniques, these cell-cell contacts could only be traced in the immediate vicinity of the tumour. With the help of the rabies viruses, we can now also see the contact partners that connect with the tumour cells over long distances via long cell extensions,’ says Svenja Tetzlaff from Dr. Dr. Venkataramani’s team, one of the two lead authors of the article. ’We can now map the entire network of tumour-nerve connections in the brain.’ 

Aggressively invasive growth even in the very early stages of the disease

Molecular contact tracing showed that the tumour cells connect to nerve cells extremely quickly. Long before the tumour becomes visible using clinical imaging and long before neurological disorders occur, the cancer cells are already linked to neuronal networks. ‘We did not expect this. It means that the aggressive growth of these brain tumours occurs at a very early stage, long before the first signs of disease,’ says Ekin Reyhan, a junior scientist at the Heidelberg Medical Faculty and also a first author on the paper.

In addition, the new method of visualising more distant contact partners revealed several different types of nerve cell for the first time. However, so-called acetylcholinergic nerve cells, which are important for memory and attention processes, appear to play a special role. In animal experiments, tumour growth slowed down when the tumour cells were genetically modified so that they could no longer receive signals from these nerve cells. 

Combination of radiation and targeted drugs could improve therapy

The close contacts with healthy nerve cells also help the tumour network to survive radiation better, even if the main tumour in the core radiation area dies, as the scientists discovered: in mice, the radiation increased neuronal activity, so more excitatory signals reached the remaining tumour cells and thus fuelled their spread. When the researchers dampened the overactivity of the nerve cells with a specific epilepsy drug, the radiotherapy had a more lasting effect, and the glioblastoma regenerated much more slowly. ‘This could be highly relevant for therapy,’ says Dr. Dr. Venkataramani. ‘However, since the results of animal experiments cannot be transferred 1:1 to humans, we will only know for sure after clinical trials with patients.’ The modified rabies viruses could also be used to block the nerve cells in contact with the tumour. The team showed that this is possible in principle. However, extensive modifications to the virus are still needed before it can be used in humans.

Literatur

Tetzlaff SK, Reyhan E, Layer N, et al. Characterizing and targeting glioblastoma neuron-tumor networks with retrograde tracing. Cell. Published online December 6, 2024. doi:10.1016/j.cell.2024.11.002

Weitere Informationen im Internet

Neurologische Klinik am UKHD

Klinische Kooperationseinheit Neuroonkologie

Labor Dr. Dr. Venkataramani

Kontakt

Dr. med. Dr. rer. nat. Varun Venkataramani 
Research group leader and resident physician in neurology
Neurological Clinic of the UKHD
Department of Functional Neuroanatomy
Institute of Anatomy and Cell Biology
Heidelberg Medical Faculty of the Heidelberg University
Clinical Cooperation Unit Neuro-Oncology, German Cancer Research Center
E-mail: varun.venkataramani@med.uni-heidelberg.de

Our latest News

discover more
AbbVie US + EU Golden Ticket 2025 – Apply by November 7, 2025

AbbVie US + EU Golden Ticket 2025 – Apply by November 7, 2025

AbbVie is launching a US and Europe based golden ticket. The award consists of one golden ticket, which provides one year of fully paid individual bench, a desk and membership at one of BioLabs’ operating locations in the US, France or Germany. The award is intended for early-stage biotech companies developing therapeutics (not devices) in […]

Two Life Sciences Bridge Awards for Heidelberg researchers

Two Life Sciences Bridge Awards for Heidelberg researchers

Double success for Heidelberg life sciences: Two of the three prestigious Life Sciences Bridge Awards presented this year go to Heidelberg University’s Medical Faculty. The Aventis Foundation honors infectious disease specialist Dr. Frauke Mücksch and neurologist Dr. Varun Venkataramani for their groundbreaking research. While Mücksch is searching for new ways to one day cure HIV […]

How Fibrosis Disrupts the Heart’s Electrical Signals

How Fibrosis Disrupts the Heart’s Electrical Signals

Innovative imaging technique reveals hidden electrical connections in diseased hearts and provides new therapeutic approaches Cardiac fibrosis can be life-threatening: the formation of connective tissue in the heart muscle causes it to become stiffer, impairs electrical signal transmission, and weakens pumping capacity, which can lead to cardiac arrhythmias. However, the effects of cardiac fibrosis on […]

GET IN TOUCH

Stay Updated with bioRN’s Newsletter

Sign up for our newsletter to discover more!
* required

BioRN (BioRN Network e.V. and BioRN Cluster Management GmbH) will use the information you provide on this form to be in touch with you and to provide updates and marketing. Please let us know all the ways you would like to hear from us:

You can update your subscription preferences or unsubscribe at any time. Just follow the unsubscribe or update link in the footer of automated emails you receive from us, or by contacting us at info@biorn.org. We will treat your information with respect. For more information about our privacy practices please visit our website: www.biorn.org. By clicking below, you agree that we may process your information in accordance with these terms.

We use Mailchimp as our marketing platform. By clicking below to subscribe, you acknowledge that your information will be transferred to Mailchimp for processing. Learn more about Mailchimp's privacy practices.

Intuit Mailchimp