January 16, 2025

Epigenetics ensures placenta functioning

Epigenetics ensures placenta functioning

If the development of blood vessels in the placenta is impaired, fetal growth retardation may result. Scientists from the German Cancer Research Center (DKFZ) and the Mannheim Medical Faculty of Heidelberg University discovered that the correct development of functioning blood vessels in the mouse placenta is controlled epigenetically: One of the enzymes that modify gene activity using methyl groups is responsible. The researchers also observed a connection with a deficiency of this “methyltransferase” in a well-known pregnancy complication.

Placental vessels of the mouse | © Augustin/DKFZ

In all female mammals, including humans, the growing fetus in the uterus is supplied via the placenta. Through this temporary organ, the fetus is connected to the mother’s bloodstream, receiving nutrients and oxygen and releasing waste products.

In the case of placental insufficiency, the placenta is not supplied with a sufficient amount of blood and the exchange of substances between the placenta and fetus does not function properly. This endangers the supply of the fetus. As a rule, a developmental disorder of the blood vessels of the placenta is responsible for this.

Vascular specialist Hellmut Augustin from the DKFZ and the Mannheim Medical Faculty of Heidelberg University is well aware of the enormous importance of blood vessel development during pregnancy: “Abnormal growth of the placental blood vessels is the main cause of fetal growth retardation.” In order to gain a better understanding of how such malformations can arise, Augustin and his team have now examined the blood vessels of the mouse placenta at the single-cell level.

The researchers focused on the endothelial cells that line the inside of the blood vessels and play a crucial role in the formation of new blood vessels. Their focus was on the endothelial cells from the area of the mouse placenta that corresponds to the chorionic villi in humans.

The team found that in the normally formed placenta, the activity of certain critical genes in the endothelial cells decreases from the maternal to the fetal side. This zonation occurs in relation to the strength of the blood flow. What is the reason for this? Epigenetic mechanisms such as DNA methylation are responsible for stronger or weaker gene expression in the cell. Therefore, the researchers analyzed the enzymes responsible for DNA methylation, the so-called DNA methyltransferases. In doing so, DNA methyltransferase DNMT3A turned out to be mainly responsible for the methylation of the fetal placental endothelium.

When DNMT3A was genetically switched off in the endothelial cells of the mice, DNA methylation decreased and the spatial zonation of endothelial gene expression was lost. The development of the placental vasculature, which is crucial for the fetus, was impaired. This resulted in retarded growth, which was still noticeable after birth.

To find out whether these results obtained in mice correlate with findings in pregnant women, Augustin’s team scoured the gene databases: They compared previously published single-cell RNA sequence data from endothelial cells in healthy placentas with placentas from women suffering from preeclampsia. This complication can cause growth disorders in the baby because it is no longer properly supplied via the placenta. As expected based on the results obtained in the mouse, the placental endothelium of the preeclampsia patients had reduced DNMT3A expression.

“The combination of the compelling mouse data with the correlative patient data suggests that DNMT3A plays a crucial role in the healthy development of placental vessels – and that a deficiency of this enzyme could contribute significantly to the development of placental insufficiency,” explains Stephanie Gehrs, the first author of the publication. “A better understanding of the underlying mechanisms leading to placental insufficiency forms the basis for future approaches to better understand pregnancy disorders and possibly treat them in a more targeted manner.”

Stephanie Gehrs, Moritz Jakab, Ewgenija Gutjahr, Zuguang Gu; Dieter Wiechenhahn, Jan-Philipp Mallm, Carolin Mogler, Matthias Schlesner, Christoph Plass, Katarina Schlereth, Hellmut G. Augustin: The spatial zonation of the placental vasculature is specified by epigenetic mechanisms.
Dev. Cell 2025, https://doi.org/10.1016/j.devcel.2024.12.037 

Our latest News

discover more
HEIDELBERG UNIVERSITY HOSPITAL AMONG THE WORLD’S BEST HOSPITALS IN 2025

HEIDELBERG UNIVERSITY HOSPITAL AMONG THE WORLD’S BEST HOSPITALS IN 2025

The US magazine “Newsweek” has once again named Heidelberg University Hospital (UKHD) one of the best hospitals in the world. In the “World’s Best Hospitals 2025” ranking, which is compiled by “Newsweek” in collaboration with the statistics and data platform “Statista”, the UKHD ranks 14th out of 2,400 hospitals worldwide. In Germany, the UKHD is […]

Scientists discover the function of a mysterious HIV component

Scientists discover the function of a mysterious HIV component

A research team including scientists from Heidelberg University Hospital has gained new insights into HIV-1. Researchers from Martinsried, Heidelberg und Yale have discovered the mechanism behind an important step in the life cycle of HIV. Working together with teams at Heidelberg and Yale Universities, they found that the enigmatic “spacer peptide 2”, one of the […]

Early Excellence in Science Award for Ivana Winkler

Early Excellence in Science Award for Ivana Winkler

The Bayer Foundation’s Early Excellence in Science Award 2024 in the category of Data Science goes to Ivana Winkler of the German Cancer Research Center (DKFZ). Winkler’s work uncovered the unexpected effect of female reproductive capacity: the constantly recurring remodeling of the organs of the female reproductive tract during the sexual cycle leads to fibrosis […]

GET IN TOUCH

Stay Updated with bioRN’s Newsletter

Sign up for our newsletter to discover more!
* required

BioRN (BioRN Network e.V. and BioRN Cluster Management GmbH) will use the information you provide on this form to be in touch with you and to provide updates and marketing. Please let us know all the ways you would like to hear from us:

You can update your subscription preferences or unsubscribe at any time. Just follow the unsubscribe or update link in the footer of automated emails you receive from us, or by contacting us at info@biorn.org. We will treat your information with respect. For more information about our privacy practices please visit our website: www.biorn.org. By clicking below, you agree that we may process your information in accordance with these terms.

We use Mailchimp as our marketing platform. By clicking below to subscribe, you acknowledge that your information will be transferred to Mailchimp for processing. Learn more about Mailchimp's privacy practices.

Intuit Mailchimp