September 26, 2024

How Developmental Signals Can Contribute to Genomic Mosaicism

How Developmental Signals Can Contribute to Genomic Mosaicism

Heidelberg researchers identify biological mechanism that protects against, but can also trigger, errors in the genome

Chromosome segregation error in a dividing neural stem cell (magenta) during neurogenesis in a mouse developing brain | © Janina Hattemer and Sergio Acebrón

Certain developmental signals shape not only the human embryo but also play a significant role in maintaining our genetic blueprints. They prevent alterations in the genome, known as mosaicism. An international research team led by scientists of the Centre for Organismal Studies of Heidelberg University made this discovery in investigations using stem cells. The underlying biological mechanism helps the DNA to produce an identical copy of itself during cell division using the original genetic blueprint. However, it can also contribute to genomic mosaicism during nerve cell development, according to the researchers, who analyzed tens of thousands of stem cell divisions.

The human body consists of trillions of cells that all have the same genetic blueprint and replicate themselves from a single fertilized egg, i.e., replicate and segregate division after division. “Over the course of our lives, cell mutations or other genomic alterations can arise due to errors in the underlying processes or the effect of mutagens in some cells. This creates mosaicism in our body,” explains Dr. Anchel de Jaime-Soguero, a postdoctoral researcher in the team led by Prof. Dr. Sergio P. Acebrón at the Centre for Organismal Studies of Heidelberg University. This genomic mosaicism describes the existence of cell lines with different genetic information, which can lead to serious disorders or diseases.

“In embryonic development, there are two critical bottlenecks for maintaining the genome,” states Dr. de Jaime-Soguero. Early human embryos often accumulate major alterations in their genome, including the loss or gain of whole chromosomes, which is the leading cause of miscarriage. Furthermore, explosive neurogenesis in the developing brain can be accompanied by widespread genomic alterations that can contribute to neurodevelopmental disorders. What biological processes underlie the temporal and spatial formation of mosaicism has remained largely unknown.

For their investigations, the researchers used pluripotent stem cells that are able to develop into nearly any type of cell in the organism. Using high-resolution imaging processes, they analyzed tens of thousands of stem cell divisions. Prof. Acebrón’s team was able to prove that the molecular signals that contribute to embryonic development and protect against errors in the genome of stem cells can also trigger mosaicism. Whether these different developmental signals, in particular WNT, BMP, and FGF, assume one or the other function, depends on where they are active in the early stages of embryonic development, the researchers report.

The researchers also determined that the underlying regulatory mechanism functions like a brake or gas pedal for the replication dynamics of DNA. Beyond pluripotency, most embryonic cell types are “insensitive” to this mechanism – with the exception of neural stem cells, which generate nerve cells. In their experiments with human and mouse neural stem cells, the researchers found that the same signal that induces neurogenesis is also responsible for the high levels of chromosome segregation errors. “We think that this biological mechanism is a critical piece of a puzzle to understand how mosaicism arises during early embryonic development,” states Prof. Acebrón.

This research work was incorporated into Heidelberg University’s Collaborative Research Center SFB 1324, “Mechanisms and Functions of Wnt Signaling”. Researchers from the University of Göttingen, the European Molecular Biology Laboratory and the German Cancer Research Center in Heidelberg as well as scientists from Great Britain, the Netherlands, and Sweden also contributed to the work. Funding was provided by the German Research Foundation, the Alexander von Humboldt Foundation, the German Academic Scholarship Foundation, the Chica and Heinz Schaller Foundation and UK Research and Innovation. The results were published in the journal “Nature Communications”.

Original publication

A. de Jaime-Soguero, J. Hattemer, A. Bufe, A. Haas, J. van den Berg, V. van Batenburg, B. Das, B. di Marco, S. Androulaki, N. Böhly, J. J. M. Landry, B. Schoell, V. S. Rosa, L. Villacorta, Y. Baskan, M. Trapp, V. Benes, A. Chabes, M. Shahbazi, A. Jauch, U. Engel, A. Patrizi, R. Sotillo, A. van Oudenaarden, J. Bageritz, J. Alfonso, H. Bastians & S. P. Acebrón: Developmental signals control chromosome segregation fidelity during pluripotency and neurogenesis by modulating replicative stress. Nature Communications (28 August 2024)

Original News

Our latest News

discover more
Contracts signed for Heidelberg-Mannheim hospital network

Contracts signed for Heidelberg-Mannheim hospital network

It’s now official: the alliance between the two university hospitals in Heidelberg and Mannheim can start as planned on January 1 and begin its work. Press release from the Baden-Württemberg Ministry of Science, Research, and the Arts. Full Text in German below. Verträge zum Klinikverbund Heidelberg-Mannheim unterzeichnet Nun ist es offiziell: Der Verbund zwischen den […]

Cystic fibrosis research: AI-assisted evaluation of MRI images in chronic rhinosinusitis

Cystic fibrosis research: AI-assisted evaluation of MRI images in chronic rhinosinusitis

Persistent inflammation of the paranasal sinuses, chronic rhinosinusitis, is a common comorbidity in cystic fibrosis and significantly impairs quality of life. The working group led by Dr. Niclas Hagen, Institute for Medical Informatics at Heidelberg University’s Faculty of Medicine and Heidelberg University Hospital, is currently developing a method that uses AI to contribute to the […]

New Research Group Leader at the Max Planck Institute for Medical Research

New Research Group Leader at the Max Planck Institute for Medical Research

In March 2026, Kevin Jahnke will establish a research group on ‘Biomembrane Engineering’ at the new Heilbronn site of the Max Planck Institute for Medical Research. Its focus will be on engineering synthetic lipid nano- and microstructures, with the aim of investigating the biophysics of both cells and lipid vesicles.  Connecting biophysical insights with biotechnological […]

GET IN TOUCH

Stay Updated with bioRN’s Newsletter

Sign up for our newsletter to discover more!
* required

BioRN (BioRN Network e.V. and BioRN Cluster Management GmbH) will use the information you provide on this form to be in touch with you and to provide updates and marketing. Please let us know all the ways you would like to hear from us:

You can update your subscription preferences or unsubscribe at any time. Just follow the unsubscribe or update link in the footer of automated emails you receive from us, or by contacting us at info@biorn.org. We will treat your information with respect. For more information about our privacy practices please visit our website: www.biorn.org. By clicking below, you agree that we may process your information in accordance with these terms.

We use Mailchimp as our marketing platform. By clicking below to subscribe, you acknowledge that your information will be transferred to Mailchimp for processing. Learn more about Mailchimp's privacy practices.

Intuit Mailchimp