February 13, 2025

Spliceosome: How Cells Avoid Errors When Manufacturing mRNA

Spliceosome: How Cells Avoid Errors When Manufacturing mRNA

Structural biologists provide a first-time look at the atomic level into the quality control mechanism of this complex molecular machine

A complex molecular machine, the spliceosome, ensures that the genetic information from the genome, after being transcribed into mRNA precursors, is correctly assembled into mature mRNA. Splicing is a basic requirement for producing proteins that fulfill an organism’s vital functions. Faulty functioning of a spliceosome can lead to a variety of serious diseases. Researchers at the Heidelberg University Biochemistry Center (BZH) have succeeded for the first time in depicting a faultily “blocked” spliceosome at high resolution and reconstructing how it is recognized and eliminated in the cell. The research was conducted in collaboration with colleagues from the Australian National University.

Quality control during splicing: When an error in the precursor mRNA is detected, the spliceosome is blocked, the recruited control factors interrupt the “normal” cycle, and a molecular short circuit causes the spliceosome to disassemble. | © K. Wild, K. Soni, I. Sinning

The genetic information of all living organisms is contained in the DNA, with the majority of genes in higher organisms being structured in a mosaic-like manner. So the cells are able to “read” the instructions for building proteins stored in these genetic mosaic particles, they are first copied into precursors of mRNA, or messenger RNA. The spliceosome then converts them into mature, functional mRNA. To do this, this large protein-RNA complex, which is located in the cell nucleus, removes non-coding sections (introns) from mRNA precursors and links the coding sections (exons) to form a continuous strand of information. Errors in this process, also known as splicing, are one of the main causes of inheritable genetic disorders and are associated with neurodevelopmental disorders and diseases such as cancer. It was known that the spliceosome has quality control mechanisms, but the mechanistic details were not understood.

For their experiments, the Heidelberg researchers led by BZH director Prof. Dr Irmgard Sinning used the fission yeast Schizosaccharomyces pombe, a model organism frequently used in cell biology. Using molecular markers, defective spliceosomes were identified, purified, and structurally examined via cryo-electron microscopy. “The largely stable structure of the spliceosome center enabled us to obtain high-resolution information. This means that a spliceosome discarded during cellular quality control can be represented at the atomic level for the first time,” states the structural biologist. “However, analyzing the components flexibly bound to the periphery of the spliceosome was a major challenge for our work,” explains Dr Komal Soni from the BZH.

Based on this structural information, the scientists were able to understand which errors occur during splicing, how the spliceosome recognizes faulty processes and subsequently aborts the splicing, thereby sorting out the faulty complex. Using the detailed structures, the researchers were also able to model the underlying molecular mechanisms. The proteins involved in this process of cellular quality control are conserved in eukaryotic organisms from fission yeast to humans. The scientists therefore assume that the mechanisms for recognizing and sorting out faulty spliceosomes have remained largely unchanged over the course of evolution. 

The research was carried out as part of a long-term collaboration between the teams of Prof. Sinning and Prof. Dr Tamas Fischer, who specializes in RNA surveillance at the Australian National University in Canberra. Prof. Dr Henning Urlaub’s research group at the Max Planck Institute for Multidisciplinary Sciences in Göttingen also participated. The work was funded by the German Research Foundation and the Australian Research Council. The results of the research were published in “Nature Structural & Molecular Biology”.

Original publication

K. Soni, A. Horvath, O. Dybkov, M. Schwan, S. Trakansuebkul, D. Flemming, K. Wild, H. Urlaub, T. Fischer & I. Sinning: Structures of aberrant spliceosome intermediates on their way to disassembly. Nature Structural & Molecular Biology (20 January 2025),

Further Information

Our latest News

discover more
New approach for T-cell immunotherapy against malignant brain tumors

New approach for T-cell immunotherapy against malignant brain tumors

Researchers at the German Cancer Research Center (DKFZ) and the University Medical Center Mannheim (UMM) have developed a promising cellular immunotherapy for the treatment of glioblastomas: They equipped T cells with a receptor that recognizes a protein of the brain tumors that is responsible for the dangerous stem cell properties. The therapeutic T cells directed […]

RNA Origami: Artificial Cytoskeletons to Build Synthetic Cells

RNA Origami: Artificial Cytoskeletons to Build Synthetic Cells

Synthetic biologists from Heidelberg University create nanotubes folded from the natural RNA biomolecule With the long-term goal of creating living cells from non-living components, scientists in the field of synthetic biology work with RNA origami. This tool uses the multifunctionality of the natural RNA biomolecule to fold new building blocks, making protein synthesis superfluous. In […]

Hummingbird Diagnostics Announces Publication Evaluating miR-Blood’s Small RNA Expression Dataset Capabilities in Nature’s Scientific Data

Hummingbird Diagnostics Announces Publication Evaluating miR-Blood’s Small RNA Expression Dataset Capabilities in Nature’s Scientific Data

miR-Blood is capable of revealing highly cell-type specific patterns of small RNA expression HEIDELBERG, Germany, March 06, 2024 – Hummingbird Diagnostics GmbH, a leader in using blood-based small RNAs for early disease detection and characterization, today announced a publication in Scientific Data, a peer-reviewed, open-access journal launched by Nature. The study evaluated miR-Blood, Hummingbird Diagnostics’ […]

GET IN TOUCH

Stay Updated with bioRN’s Newsletter

Sign up for our newsletter to discover more!
* required

BioRN (BioRN Network e.V. and BioRN Cluster Management GmbH) will use the information you provide on this form to be in touch with you and to provide updates and marketing. Please let us know all the ways you would like to hear from us:

You can update your subscription preferences or unsubscribe at any time. Just follow the unsubscribe or update link in the footer of automated emails you receive from us, or by contacting us at info@biorn.org. We will treat your information with respect. For more information about our privacy practices please visit our website: www.biorn.org. By clicking below, you agree that we may process your information in accordance with these terms.

We use Mailchimp as our marketing platform. By clicking below to subscribe, you acknowledge that your information will be transferred to Mailchimp for processing. Learn more about Mailchimp's privacy practices.

Intuit Mailchimp