February 28, 2025

New Publication from CeMOS: Exploring the Aβ Plaque Microenvironment in Alzheimer’s Disease Model Mice by Multimodal Lipid-Protein-Histology Imaging on a Benchtop Mass Spectrometer

New Publication from CeMOS: Exploring the Aβ Plaque Microenvironment in Alzheimer’s Disease Model Mice by Multimodal Lipid-Protein-Histology Imaging on a Benchtop Mass Spectrometer

Müller, E.; Enzlein, T.; Niemeyer, D.; von Ammon, L.; Stumpo, K.; Biber, K.; Klein, C.; Hopf, C. Exploring the Aβ Plaque Microenvironment in Alzheimer’s Disease Model Mice by Multimodal Lipid-Protein-Histology Imaging on a Benchtop Mass Spectrometer. Pharmaceuticals 202518, 252. https://doi.org/10.3390/ph18020252

Abstract

Amyloid-β (Aβ) plaque deposits in the brain are a hallmark of Alzheimer’s disease (AD) neuropathology. Plaques consist of complex mixtures of peptides like Aβ1–42 and characteristic lipids such as gangliosides, and they are targeted by reactive microglia and astrocytes. Background: In pharmaceutical research and development, it is a formidable challenge to contextualize the different biomolecular classes and cell types of the Aβ plaque microenvironment in a coherent experimental workflow on a single tissue section and on a benchtop imaging reader. Methods: Here, we developed a workflow that combines lipid MALDI mass spectrometry imaging using a vacuum-stable matrix with histopathology stains and with the MALDI HiPLEX immunohistochemistry of plaques and multiple protein markers on a benchtop imaging mass spectrometer. The three data layers consisting of lipids, protein markers, and histology could be co-registered and evaluated together. Results: Multimodal data analysis suggested the extensive co-localization of Aβ plaques with the peptide precursor protein, with a defined subset of lipids and with reactive glia cells on a single brain section in APPPS1 mice. Plaque-associated lipids like ganglioside GM2 and phosphatidylinositol PI38:4 isoforms were readily identified using the tandem MS capabilities of the mass spectrometer. Conclusions: Altogether, our data suggests that complex pathology involving multiple lipids, proteins and cell types can be interrogated by this spatial multiomics workflow on a user-friendly benchtop mass spectrometer.

Our latest News

discover more
MAGIC: AI-assisted laser tag illuminates cancer origins

MAGIC: AI-assisted laser tag illuminates cancer origins

EMBL researchers have developed a new AI tool, which, through a game of molecular laser tag, identifies cells that can shed light on the earliest origins of cancer Summary The human body relies on precise genetic instructions to function, and cancer begins when these instructions get scrambled. When cells accumulate genetic errors over time, they […]

A human placenta model to protect pregnant women and their babies

A human placenta model to protect pregnant women and their babies

EMBL researchers were awarded a BII foundation grant to support Model-MI – an in vitro model that mimics the maternal-fetal interface Pregnancy is a period of both excitement and concern for the healthy development of the foetus and the well-being of the expectant mother. During the ~40 weeks of gestation, many external factors constitute a danger for […]

Predicting Avian Flu Outbreaks in Europe Using Machine Learning

Predicting Avian Flu Outbreaks in Europe Using Machine Learning

Heidelberg researchers identify local outbreak indicators and develop new regional modeling approach Local factors such as seasonal temperature, the year-dependent water and vegetation index, and data on animal density can be used to predict regional outbreaks of avian flu in Europe. This is the finding of a research team led by epidemiologist, mathematician, and statistician […]

GET IN TOUCH

Stay Updated with bioRN’s Newsletter

Sign up for our newsletter to discover more!
* required

BioRN (BioRN Network e.V. and BioRN Cluster Management GmbH) will use the information you provide on this form to be in touch with you and to provide updates and marketing. Please let us know all the ways you would like to hear from us:

You can update your subscription preferences or unsubscribe at any time. Just follow the unsubscribe or update link in the footer of automated emails you receive from us, or by contacting us at info@biorn.org. We will treat your information with respect. For more information about our privacy practices please visit our website: www.biorn.org. By clicking below, you agree that we may process your information in accordance with these terms.

We use Mailchimp as our marketing platform. By clicking below to subscribe, you acknowledge that your information will be transferred to Mailchimp for processing. Learn more about Mailchimp's privacy practices.

Intuit Mailchimp