October 18, 2024

What we can learn from hungry yeast cells

What we can learn from hungry yeast cells

Scientists at EMBL Heidelberg and University of Virginia School of Medicine have discovered a curious way in which cells adapt to starvation – a mechanism with potential cancer implications

In starved fission yeast, the ribosomes attach to the mitochondrial outer membrane via their small subunit. This is a very unusual ‘upside-down’ orientation. Credit: Isabel Romero Calvo/EMBL

Summary

  • Scientists at EMBL Heidelberg and University of Virginia School of Medicine have revealed a new cellular adaptation to starvation, in which the mitochondria of yeast cells get coated by ribosomes.
  • Surprisingly, the ribosomes attach to the mitochondrial outer membrane with a very unusual ‘upside-down’ orientation.
  • The discovery of this mechanism has potential implications for our understanding of how stressed cancer cells survive starvation.

What can stressed yeast teach us about fundamental processes in the cell? A lot, according to EMBL Heidelberg’s Mattei Team. The team studies, among other topics, how cells adapt to stress — such as nutrient deprivation. One of their favourite test subjects is the yeast species S. pombe, for centuries used in traditional brewing. As a eukaryote, it’s in many ways similar to human cells, so biologists often use it as model organism to study fundamental cellular processes.

Ribosomes turn upside-down in hungry cells

Scientists have observed that yeast cells have a remarkable adaptation to starvation: their mitochondria get coated by a swarm of massive molecular complexes called ribosomes. Intrigued by this odd phenomenon, the Mattei Team and the Jomaa Lab at the University of Virginia School of Medicine explored it in greater detail using single-particle cryo-electron microscopy and cryo-electron tomography.

Ribosomes are the cell’s heavyweight molecular machinery that produces proteins. It turned out, however, that in hungry yeast cells, the ribosomes that crowd on the surface of the mitochondria don’t produce anything. They are hibernating.

“One way for a cell to survive stressful conditions until better days is to reduce its use of energy to a minimum,” explained Olivier Gemin, EIPOD Postdoctoral Fellow in the Mattei Team who led this new study. “Producing proteins demands a lot of energy, which can be saved by blocking ribosomes.”

Why the hibernating ribosomes attach to the surface of mitochondria is a mystery.

“There could be different explanations,” said Team Leader Simone Mattei. “A starved cell will eventually start digesting itself, so the ribosomes might be coating the mitochondria to protect them. They might also attach to trigger a signalling cascade inside the mitochondria.”

Another possibility that Mattei is investigating relates to the fact that starving cells need a way to quickly start producing energy once food (in the form of glucose) is available again. Since mitochondria are the energy producers of the cell, having ribosomes nearby to produce necessary proteins might help this process along.

What made the scientists’ jaws drop was noticing that the ribosomes attach to the mitochondrial outer membrane in a way that contradicts what’s been known about them before.

“So far, ribosomes were known to interact with membranes only via their large subunit. But in starved cells, we saw that they do this upside-down, via the small subunit!” said Mattei.

In their future studies, the team will investigate how and why the ribosomes attach in such an unusual way.

Cancer cells go through the hell they create

The struggles of the starved yeast cells have some similarities to those of cancer cells.

Believe it or not, being a cancer cell is really tough. When a tumour becomes aggressive, its cells grow so rapidly that their demand for nutrients and oxygen outpaces the supply. This means most cancer cells are constantly starving in a kind of hell they create for themselves.

Yet, they survive and even multiply.

“That’s why we need to understand the basics of adaptation to starvation and how these cells become dormant to stay alive and avoid death,” said Ahmad Jomaa, Assistant Professor and Group Leader at the University of Virginia’s School of Medicine and a senior co-author of the study. “For that, we use yeast first, because we can manipulate it much more easily. Beyond this, we try to starve cultured cancer cells too, which is not easy, to figure out how they overcome starvation and can sometimes lead to cancer relapse.”

Understanding the principles of this adaptation could help us find ways to override it, making cancer cells vulnerable to starvation and thus more susceptible to treatment.


Source article(s)
Ribosomes hibernate on mitochondria during cellular stress

Gemin O., Gluc M., et al.
Nature Communications 8 October 2024
10.1038/s41467-024-52911-4

Original News

Our latest News

discover more
Universität Heidelberg with 16 “Highly Cited Researchers”

Universität Heidelberg with 16 “Highly Cited Researchers”

International evaluation names researchers whose publications have been most cited worldwide 16 researchers from Heidelberg University feature on the recently published list of “Highly Cited Researchers”. This international evaluation names researchers whose publications have been cited most frequently worldwide in their respective field or who have an outstanding track-record of publications across several disciplines. The […]

Universität Heidelberg: New DFG Research Unit in Oncology

Universität Heidelberg: New DFG Research Unit in Oncology

GenoMiCC consortium deals with functional genomics and microbiomics in colorectal cancer and is coordinated at the Medical Faculty Mannheim In the latest approval round of the German Research Foundation (DFG), Heidelberg University has been successful with a grant application for a new Research Unit in oncology. The GenoMiCC consortium pursues the goal of identifying new […]

Merck and Promega collaborate on 3D cell technology for drug discovery

Merck and Promega collaborate on 3D cell technology for drug discovery

Full text in German below. Merck und Promega arbeiten gemeinsam an 3D-Zelltechnologie für die Wirkstoffforschung Strategische Partnerschaft bündelt Know-how von Merck im Bereich Organoide mit Promegas Assay-TechnologienForschende erhalten besseren und schnelleren Zugang zu krankheitsrelevanten ZellmodellenStärkt Mercks Position bei zukunftsweisenden Tools und Lösungen auf dem Gebiet der Biologie Darmstadt, Deutschland. (06. November 2025) Merck, ein führendes Wissenschafts- […]

GET IN TOUCH

Stay Updated with bioRN’s Newsletter

Sign up for our newsletter to discover more!
* required

BioRN (BioRN Network e.V. and BioRN Cluster Management GmbH) will use the information you provide on this form to be in touch with you and to provide updates and marketing. Please let us know all the ways you would like to hear from us:

You can update your subscription preferences or unsubscribe at any time. Just follow the unsubscribe or update link in the footer of automated emails you receive from us, or by contacting us at info@biorn.org. We will treat your information with respect. For more information about our privacy practices please visit our website: www.biorn.org. By clicking below, you agree that we may process your information in accordance with these terms.

We use Mailchimp as our marketing platform. By clicking below to subscribe, you acknowledge that your information will be transferred to Mailchimp for processing. Learn more about Mailchimp's privacy practices.

Intuit Mailchimp