October 17, 2025

Transparent artificial intelligence improves assessment of prostate cancer aggressiveness

Transparent artificial intelligence improves assessment of prostate cancer aggressiveness

Until today, the aggressiveness of prostate cancer has been assessed primarily using the Gleason grading system—an analysis of cancer tissue in a pathology laboratory that is highly subjective. An international research team led by the German Cancer Research Center (DKFZ) has now developed a novel, explainable AI model that aims to make the diagnosis of prostate cancer more transparent and less susceptible to error.

“Previous AI models can make predictions about Gleason scores, but often do not provide a comprehensible explanation, which limits their clinical acceptance,” explains Titus Brinker from the DKFZ. The newly developed system dispenses with retrospective explanations and is based directly on descriptions of the pathology. To this end, 1,015 tissue samples were annotated with detailed explanations by international experts.

The study, which involved 54 pathologists from ten countries, presents one of the most comprehensive collections of explanation-based tissue annotations. As a result, the Heidelberg team presents “GleasonXAI,” an AI that offers interpretable decisions—similar to those a pathologist would provide.

By using so-called “soft labels,” which reflect the uncertainties between individual pathologist assessments, the AI was able to achieve reproducible results despite high variability. In a direct comparison with conventional models, GleasonXAI achieved equivalent or better accuracy – while also offering increased transparency.

AI speaks the language of pathologists

Pathologists from Germany, the US, Canada, Switzerland, and other countries participated in the study. The experts contributed a median of 15 years of clinical experience to the project. In addition to developing the model, the team is also publishing the largest freely available dataset to date with explanatory annotations for Gleason patterns in order to further advance research on explainable AI.

“For the first time, we have developed an AI system that recognizes the characteristic tissue features of Gleason patterns and explains them in a similar way to a pathologist,” says Gesa Mittmann, co-author of the study. “This should increase trust and acceptance of AI in everyday clinical practice.”

Potential for clinical practice

The results show that explainable AI can be implemented in a practical manner without compromising performance. This could accelerate its use in routine pathology—which is highly relevant, especially in times of rising cancer rates and declining specialist capacities.

In addition, the model also supports training: “The explainable segmentations can particularly help young pathologists understand typical patterns and make reliable diagnoses more quickly,” emphasizes Brinker.

Publication:
G. Mittmann, S. Laiouar-Pedari, H. A. Mehrtens et al. Pathologist-like explainable AI for interpretable Gleason grading in prostate cancer. Nature Communications 2025, DOI: https://doi.org/10.1038/s41467-025-64712-4

Our latest News

discover more
Weight Loss in Cancer: Organs Respond to the Disease in a Coordinated Way

Weight Loss in Cancer: Organs Respond to the Disease in a Coordinated Way

Cachexia is a metabolic disorder that causes uncontrolled weight loss and muscle wasting in chronic diseases and cancer. A new study by Helmholtz Munich, in collaboration with the Institute of Physiology of the Czech Academy of Sciences in Prague, Heidelberg University Hospital, the German Center for Diabetes Research (DZD), and the German Center for Cardiovascular […]

How cells control inflammatory responses

How cells control inflammatory responses

Inflammation has to work fast against pathogens—but it can’t get out of control. Researchers at the German Cancer Research Center (DKFZ) have now deciphered in more detail how the organism masters this balancing act. Their work shows that cells use two different strategies to precisely control inflammatory genes and thus precisely regulate the inflammatory response. […]

Highly endowed research award for DKFZ scientist

Highly endowed research award for DKFZ scientist

Daniel Kirschenbaum from the German Cancer Research Center (DKFZ) is developing new methods to find out exactly how immune cells are suppressed by malignant brain tumors. He is being supported in this by the EACR-Mark Foundation and the Pezcoller Foundation with the Rising Star Award, which is endowed with 100,000 euros. Tumor cells have a […]

GET IN TOUCH

Stay Updated with bioRN’s Newsletter

Sign up for our newsletter to discover more!
* required

BioRN (BioRN Network e.V. and BioRN Cluster Management GmbH) will use the information you provide on this form to be in touch with you and to provide updates and marketing. Please let us know all the ways you would like to hear from us:

You can update your subscription preferences or unsubscribe at any time. Just follow the unsubscribe or update link in the footer of automated emails you receive from us, or by contacting us at info@biorn.org. We will treat your information with respect. For more information about our privacy practices please visit our website: www.biorn.org. By clicking below, you agree that we may process your information in accordance with these terms.

We use Mailchimp as our marketing platform. By clicking below to subscribe, you acknowledge that your information will be transferred to Mailchimp for processing. Learn more about Mailchimp's privacy practices.

Intuit Mailchimp